Table of Contents

- Magnets Discovery Box Contents
- Introduction to the Discovery Boxes
- Directions for Using the Discovery Box Activity Booklet
- Teaching Methods for the Discovery Box Activities

Activities

- Magnet or Not?
- Exploring the Uses of Magnets
- Magnetic Fields (tube and UFO)
- Compass
- Play Board
- Insect Color Defenses
- Walking Stick Camouflage
- Insect Card Matching
- How Insects See
- Make your own Butterfly
- Butterfly Symmetry Painting
- Build a Bug
Build a Bug

Children will demonstrate their understanding of the anatomy of an insect by creating a model of an insect out of found objects.

Age Range: 3 & up

Supplies

These materials can be found in the blue Bugs & Butterflies bin in the hallway behind Science Playground.

- Pipe cleaners
- Markers
- Paper
- Egg cartons
- Feathers
- Googly eyes
- Glue
- Tissue paper optional

Procedure

Explore the visitor’s knowledge on the subject through open-ended questions before explaining how the subject works.

Ask: Has anyone ever seen an insect? What did it look like?

Say: Insects are creatures with three body parts and six legs. Today we are going to create our own insects using art supplies. It can look like a real insect you’ve seen, or you can make up a new one. You can give them wings, antennae, stingers, or anything else you’ve seen an insect before.

Do: Give each child an egg carton section and let them use the provided materials to build their own bugs. As they build, ask questions.

Ask: What is the name of your bug? What does it eat? Where does it live? Does it fly?

Magnets Discovery Box Contents

Books

- What Makes A Magnet? by Franklyn M. Branley
- What Magnets Can Do by Allan Fowler
- Magnets: Pulling Together, Pushing Apart by Natalie M. Rosinsky

Box with two (2) UFO magnets

Learning Road Magnet Toy

Mysterious Magnet Tube and Booklet

Dowling Magnets Play Board

Dowling Magnets Hover Magnets Tube—Twelve (12) discs

“Magnets” Box

- Five (5) plastic-covered horseshoe magnets
- Three (3) magnet wands
- One (1) alnico magnet
- One (1) neodymium magnet
- One (1) block magnet
- Four (4) compasses
- Four (4) paper clips
- Five (5) small horseshoe magnets
- Five (5) bar magnets
- Two (2) half-ring magnets
- “Pole Patterns Magnet Kit” Activity Booklet
- Magnetic Space Wheel

Magnet Discovery Board

“Magnets” Yellow Tub

- Six (6) boxes of sample materials
The main goal of the Discovery Boxes is to give young children hands-on and authentic experiences around a big idea. We can introduce the ideas through storybooks, open-ended explorations of real objects, open-ended questions and conversations, investigations and role-playing.

In this activity booklet you will find many things to help you introduce or further explore a thematic topic with young children. It was also designed for an Educator or Volunteer to choose which works best for them and their space. The materials provided can guide you or you can make up completely new activities for the materials in the box. The choice is yours. **We only ask that you supervise the use of items in the box and return it the way you found it!**

The Discovery Box themes were selected for their relation to the real world. Young children are very egocentric and therefore experience most ideas from a personal perspective. For example, activities associated with how things work, animals, habitat, family dynamics, food, shelter, survival hold the most meaning for young children. Keep these in mind when discussing how something works. Try to relate it to these ideas, as they are concepts that young children relate to.

Young children are natural scientists, eager to find out about the world around them. Children use the process of play to investigate in much the same way scientists use the scientific method. A comparison of the two processes reveals many similarities:

<table>
<thead>
<tr>
<th>Process of Play</th>
<th>Scientific Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>Observe</td>
</tr>
<tr>
<td>Wonder</td>
<td>Hypothesize</td>
</tr>
<tr>
<td>Try</td>
<td>Test</td>
</tr>
<tr>
<td>Make Sense</td>
<td>Conclude</td>
</tr>
</tbody>
</table>

Adult roles during play vary from commenting on play, extending the activity and actively participating, to providing verbal interpretations, emotional support and suggestions or alternatives. By fostering children's natural curiosity, adults can help them develop positive attitudes toward learning, as well as important critical-thinking and problem-solving skills. The Discovery Box activities were designed to help children develop confidence in their own abilities.

Butterfly Symmetry Painting

Children will explore butterflies and the symmetry of their markings using paint and butterfly shaped paper.

Age Range: 3 & up

Supplies *(These materials are not in the discovery box.)*
- Construction paper, cut into butterfly shapes
- Washable tempera paints in paint cups
- Eyedroppers

Procedure

Explore the visitor's knowledge on the subject through open-ended questions before explaining how the subject works.

Ask: Has anyone ever had a chance to get a good look at a butterfly's wings? What did they look like? What did you notice about the colors and patterns?

Say: The colors and patterns look the same on each wing. They are symmetrical. Today we are going to make our own butterflies, making the colors and patterns look the same on both sides. To do that, we are going to drop paint on one wing only.

Do: Make sure everyone has a piece of butterfly-shaped construction paper and access to paint and eyedroppers.

Say: These droppers can be a little tricky to use. First, squeeze the top and keep it squeezed while you put the other end in the paint. Once it's in the paint, stop squeezing, and the dropper will fill with paint. Don’t squeeze it again until you are holding it over the place on the butterfly paper where you want paint to be.

Do: Illustrate using droppers. Very young children may need personal assistance with this.

Say: Once you have all the paint you want on the wing, fold it in half, and then open it.

Ask: What happened to the paint?

Say: Some of the paint got squished onto the other wing, and now the designs are the same on each side. They are symmetrical, just like a real butterfly's wings!
Say: You can curl the extra pipe cleaners into antennae.

Do: Illustrate curling the extra pipe cleaner into antennae shapes.

Say: Now we can attach the end of another pipe cleaner through the antennae of our butterflies to make them fly and give it a proboscis. The proboscis is the butterflies mouth. It is like a long straw that help the butterfly reach deep into the flower and drink out the sweet nectar.

Do: Illustrate attaching a pipe cleaner through the antennae of the butterfly. Push through a couple of inches for the proboscis and twist it to secure it. Use the long end as a handle to make it fly!

Say: And now we all have butterflies! Can you make your butterfly flap his wings? Can he fly high? How about low? Should we make a flower to feed the butterfly?

Do: Illustrate taking a couple of squares of tissue paper and pushing the centers into the palm of your hand. Curl your fingers up to give the paper a flower shape. Take the centers and pinch and twist them. Wrap the end of the pipe cleaner around the twisted end to secure it.

Say: Choose your color and do the same thing I did.

Do: Help out as needed.

Ask: How do you think that the butterfly will get the sweet nectar out of the middle of the flower? The proboscis curls up when the butterfly is not using it.

Show: How to curl and uncurl the pipe cleaner.

Say: My butterfly is feeling weak and needs some energy. What should it do?

Do: Fly you butterflies around. Slow down to show weakness. Land on the flower and uncurl the proboscis. Drink the nectar. Fly fast now that you have energy.

Directions for Using the Discovery Box Activity Booklet

The activities that follow are directions for hands-on experiences that can take place anywhere in the museum. The activities are arranged in the booklet so that the most basic concepts about the topic are covered in the beginning and then move onto to more in depth concepts at the end.

Each activity includes the following:

Icons: These icons will indicate the subject of an activity. All the activities are scientific in their nature, but they may fall more into a craft activity or a game.

Title & Purpose: A brief explanation of the activity.

Supplies: These are the items that you need to take out of the box in order to complete the activity. Please do not take everything out of the box at once or leave the box lid open for children to rummage through. You are responsible for returning the items neatly back into the box. Do not let visitors wander away with the items. Kindly ask them to leave the items with you when they are done. Let the visitor know that the items belong to OMSI and they are for everyone to play with.

Procedure: It is best to review the activity cards before you interact with the visitors. This allows you to understand the main idea so you can start the activity with confidence. You can read from the script directly or refer to it as needed as a way to converse with visitors. Remember to go with the flow and don’t worry if the child is not interested. Just follow their lead.

Notes: These are helpful hints, cautions and extensions to the activity. It is best to review the entire card before getting started.
• Don’t be a “teacher.” Be a partner in learning.

• Let the child lead with their ideas and suggestions for play. Introduce new concepts through your conversations and actions. Talk ideas through as you’re doing it. Not only does this introduce a new idea and model how to do it, but also models the concept to the child as a way to share their ideas.

• Test the theories and construct new knowledge through hands-on exploration, investigation and play.

• Model the scientific process, stating it as you do it.

• Model this process to caregivers around you.

• Body language says a lot. Don’t just sit in front of them and talk about something or ask questions in an intimidating “authoritarian figure” manner. Get on their level. Invite them to find the answer with you. Ask them to tell you what they think.

• If you don’t know the answer to a question ask the child what they think the answer is. Try looking for the answer in a book.

• Play and be silly.

• Go with the flow and expect the unexpected. If a child is not interested in doing what you are suggesting, ask them what they would like to learn, or observe what they are doing with the object and ask them to tell you about it. You could also give them words for their actions. “Oh, I see you like the way the skeleton moves. Can you feel the bones in your body move? Put your hand on your knee and bend it.” Show the child how.

• Don’t be offended when a child is disinterested. Be interested in what they are interested in. Learning is a two way street. You may have put out an item that you want to teach a child about, but an opportunity has arisen for you to observe and learn what a child will creatively do with that item. You have a chance to observe how they will place meaning onto it and listen to how they relate it to their own lives.

Teaching Methods for the Discovery Box Activities

Make Your Own Butterfly

By creating and playing with a butterfly and flower made out of craft materials visitors can learn about anatomy and feeding habits.

Age Range: 3 & up

Supplies *(These materials are not in the Discovery Box.)*

Option 1

- Pipe cleaners
- Colored tissue paper cut into 4”x4” squares.

Option 2

- Pipe cleaners
- Coffee filters
- Markers

Procedure

Explore the visitor’s knowledge on the subject through open-ended questions before explaining how the subject works.

Ask: Has anyone ever seen a butterfly? What did it look like? What was it doing when you saw it?

Say: Today, we are going to make our own butterflies. We have tissue paper to be the wings, and pipe cleaners to hold them together and be antennas.

Do: If using coffee filters and markers, give the children time to decorate the coffee filters with markers before continuing. The coffee filters can then be used as tissue paper.

Do: Illustrate constructing a butterfly while the children make their own. First, fold the pipe cleaner in half.

Say: Now we are going to make the wings. Find the middle of your tissue paper, and pinch it so it looks like a bowtie.

Do: Illustrate pinching the tissue paper into a bowtie shape.

Say: Now, we will wrap the pipe cleaner around the tissue paper to hold the wings in the bowtie shape.

Do: Illustrate wrapping the pipe cleaner around the middle of the tissue paper.
Ask: Have you ever tried to swat a fly? What happened?

Say: If you’re quick, you can swat them, but it’s very hard. Thanks to their special eyes, flies can see movement and get out of the way before they get squashed.

Say: Some insects, like grasshoppers, not only have compound eyes like these, but simple eyes too. If you look through this red tube, you can see what this looks like.

Do: Let a child look through the red tube with the ocelli lens.

Ask: What do you see now? How does it look different than the lenses you saw through the ant goggles?

Say: Simple eyes help insects like grasshoppers see light and shadows.

Say: I have one more lens you can look through.

Do: Let a child look through the elongated lens.

Say: Some insects use this lens to see details in light that we cannot.

Notes

- Refer to p.14 of *The Practical Entomologist* as an anatomy guide to insect eyes.
- Refer to p.28 of *The Practical Entomologist* for more details about how insects see.

What is a Magnet?

Children will have the opportunity to explore the nature of magnets.

Age Range: ???

Supplies

- “Magnets” Box
- *Magnets: Pulling Together, Pushing Apart* by Natalie M. Rosinsky

Procedure

Explore the visitor’s knowledge on the subject through open-ended questions before explaining how the subject works.

Do: Set out several magnets and paperclips and let the children play and explore.

Ask: What are some things magnets can do?

Say: Magnets have the power to make things move. They seem to make things move by magic.

Ask: What happens when you put two magnets close to each other?

Say: All Magnets have north poles and south poles.

Do: Show the 2 different poles of the magnets. Some of the magnets may be labeled, but some are not.

Ask: How do the different poles interact with each other?

Say: In magnets, poles that are alike repel each other. Opposite poles attract each other. I have a book that can help us explore how magnets work and how we use them.

Do: Read *Magnets: Pulling Together, Pushing Apart* by Franklyn M. Branley. Take time to look at pictures, and ask open-ended questions. With young children, it may not be necessary to read every word on every page.
Magnet or Not?

Children will have the opportunity to see what types of objects are attracted to magnets.

Age Range: ???

Supplies

- Magnet Discovery Board
- *What Makes A Magnet* book by Franklyn M. Branley
- “Magnets” Yellow Tub
- Magnet wands

Procedure

Explore the visitor's knowledge on the subject through open–ended questions before explaining how the subject works.

Ask: Have you ever seen a magnet before? Where have you seen them? What do they do?

Do: Take out Magnet Discovery Board.

Say: Let's explore the properties of magnets to find out what objects are attracted to them.

Ask: Which items are attracted to your magnet? Which items are not? What did you discover?

Do: Take out “Magnets” yellow tub and containers with items.

Say: Can you name the items in this container? What items do you think will get attracted to the magnet wands?

Do: Pass out the magnet wands. Allow the children to explore which items are attracted to the magnets.

Ask: Which items are attracted to your magnets this time? Which items are not? What did you discover?

Say: I have a book that can help us learn more about magnets.

How Insects See

Visitors will have the opportunity to explore the insect vision through the use of specially designed plastic lenses.

Age Range: 5 & up

Supplies

- “How Insects See!” box
- *Eye Wonder Bugs* book
- *The Practical Entomologist* book

Procedure

Explore the visitor’s knowledge on the subject through open–ended questions before explaining how the subject works.

Ask: Has anyone ever seen an insect up close? What did its eyes look like?

Explore: The photograph of a horsefly’s eyes on p. 11 of *Eye Wonder Bugs* book.

Ask: What do you think it would be like to have eyes like those? Do you think the world would look the same, or maybe a little different?

Say: I have some special goggles that show us what the world would look like if we had eyes like an insect.

Do: Let one of the children have a turn trying on the goggles.

Say: Insects like flies have special eyes called compound eyes. These compound eyes have many different lenses to see out of instead of just one lens in each eye like we do. It's a little like watching the same channel on a 100 different TV's.

Ask: What do you see? How do you think having eyes like this helps flies?

Say: With eyes like this, flies cannot see very much detail or things that are far away. However, they can see extremely quick movements and things that are close to them.
Insect Card Matching

Children will have the opportunity to practice shape identification by matching insect images with see-through outlines of an insect.

Age Range: 3 & up

Supplies

- Insect cards

Procedure

Explore the visitor’s knowledge on the subject through open-ended questions before explaining how the subject works.

Do: Put out 5-10 cards and their matching outlines.

Say: I have two different pictures of insects. One is a picture of the outside of an insect and the other is a see-through outline of an insect. If I put them together I can match them up. Let’s look at some that match.

Ask: Can you see-through the outline to the matching card?

Say: When you put the see-through picture on top, it should have the same outline as the picture underneath. Do you want to play a game with them? I will mix them up and you can put them back together. You can be the Entomologist which is what an insect scientists is called.

Ask: Can you match the shapes together?

Do: Help as needed. If the child gets stuck encourage them to rotate the shape or flip it over to match it to the photo image.

Do: Read *What Makes A Magnet?* by Franklyn M. Branley. Take time to look at pictures, and ask open-ended questions. With young children, it may not be necessary to read every word on every page.
Exploring the Uses of Magnets

Visitors will have the opportunity to explore what magnets can do with other objects and with other magnets.

Age Range: ???

Supplies
- “Magnets” Box
- “Magnets” Yellow Tub
- *What Magnets Can Do* book by Allan Fowler

Procedure

Explore the visitor’s knowledge on the subject through open-ended questions before explaining how the subject works.

Ask: Where have you seen magnets? What can magnets do?

Explore: The different types of magnets. Encourage children to play with both magnets and the iron objects.

Ask:

Say:

Do: Read *What Magnets Can Do* by Allan Fowler. Take time to look at pictures, make observations, and ask open-ended questions. With young children, it may not be necessary to read every word on every page.

Do: Stop on the first page and name the three body parts: 1—head, 2—thorax, 3—abdomen. Finish reading the book.

Show: The ant puppet

Ask: I wonder if this ant is an insect. How can we tell if it is?

Say: In the book, we learned that an insect body has three sections (head, thorax, and abdomen) and six legs.

Walkingstick Camouflage

Visitors will have the opportunity to learn about how and why some animals use camouflage.

Age Range: 3 & up

Supplies
- Walkingsticks
- Branch stand
- *Walkingsticks* book

Procedure

Explore the visitor’s knowledge on the subject through open-ended questions before explaining how the subject works.

Ask: Some animals have a special way of hiding themselves. There is a name for the way animals and insects hide themselves. Does anyone know what that name is?

Say: Camouflage means the hiding of something by covering it up or changing the way it looks. Some insects camouflage themselves to look like sticks, leaves, flowers, bark, or even other creatures.

Ask: Can you think of why insects would make themselves look like a stick?

Say: Insects camouflage themselves so that a predator like a bird who likes to eat insects, can’t see them very well. By camouflaging themselves, they stay safe.

Say: I want to show you a real insect who uses camouflage today. It is called a walking stick. Let’s see if we can find it.

Explore: Bring out the walking stick on the branch stand. Ask the children to observe and find the walking stick.

Ask: How does the walking stick camouflage himself?

Say: It uses camouflage to look like a stick or a leaf. They stay hidden from hungry predators this way.

Do: Read the *Walkingsticks* book.
they consume a poisonous plant called milkweed while they are caterpillars. If a bird were to eat a Monarch butterfly, it would taste bad. Birds know that the brightly colored Monarch would taste bad, just as we know eating a piece of moldy bread probably wouldn’t taste very good.

Say: The Viceroy butterfly uses camouflage in a different way. It looks like the Monarch butterfly, but it does not taste bad. They camouflage themselves by looking like a yucky tasting Monarch.

Ask: How else do you think butterflies use colors to protect themselves?

Say: Butterflies protect themselves through use of camouflage. Many butterflies use bright colors as camouflage when their colors match flowers. Others use defensive colors to scare off predators that would like to have a tasty butterfly snack.

Ask: How many legs does this ant have? Let’s count. Does it have a head section? Does it have a thorax section? How about an abdomen section? This ant must be an insect!

Ask: Do you think insects have bones inside their bodies?

Say: Insects do not have bones inside their bodies like humans and animals do. They have a hard outer shell called an exoskeleton instead. The exoskeleton protects the soft, squishy parts inside the insect’s body.

Do: Show the specimen viewer with the Walkingstick exoskeleton and the Hissing Cockroach exoskeleton. Help the children find the viewing lens and help to hold the viewer so they do not shake it.

Say: These are exoskeletons that have been shed off. When insects grow they outgrow their exoskeleton. So they make a bigger new one and shed of the smaller older one.
Insect Body Part Song

Visitors will have the opportunity to sing a song about the body parts of insects.

Age Range: 3 & up

Supplies

None

Procedure

Explore the visitor’s knowledge on the subject through open–ended questions before explaining how the subject works.

Say: I have a song that can help us remember the body parts of insects. I’ll sing it one time by myself, and then we can sing it together.

Sing: (To the tune of Head, Shoulders, Knees and Toes)
- Head, thorax, abdomen, and exoskeleton
- Compound eyes and two antennae and some wings

Do: As you sing, point to the body part on yourself that most corresponds to the insect body part.
- Head– your own head
- Thorax– your chest
- Abdomen– your abdomen
- Exoskeleton– gesture to your whole body
- Compound eyes– place hands in circular shape in front of your eyes
- Two antennae– use your fingers as pretend antennae on top of your head
- Wings– flap your arms.

Do: Sing the song three or four times, or more depending on interest.

Insect Color Defenses

Visitors will explore some of the ways insects defend themselves.

Age Range: 3 & up

Supplies

- “Insect Color Defense” chart
- Butterflies specimens under glass
- *Peterson First Guides—Insects*

Procedure

Explore the visitor’s knowledge on the subject through open–ended questions before explaining how the subject works.

Say: When an insect has bright color combinations like red, yellow, orange, and black, that usually means that the insects taste bad, are poisonous, or even stinging.

Explore: “Insect color Defense” chart

Ask: How do you think this helps insects?

Say: These bright colors are used as a defense from being eaten.

Ask: What colors are bumblebees? What do bees do if you upset them?

Explore: The Butterfly specimens under glass. Notice the bright colors on the butterfly’s wings.

Ask: What colors do you see on the butterfly’s wings? How do you think these bright colors help the butterfly?

Show: p. 83 of the *Peterson First Guides—Insects*. Compare the Monarch and the Viceroy.

Ask: Do these two butterflies look similar? Do they look exactly the same? What is different?

Say: Monarch butterflies have a bad taste as their defense because
Ask: What do you think happens next?

Say: Next, the butterfly becomes a chrysalis and the silkworm makes a cocoon. This is the pupa stage for both the butterfly and the moth, but they are different.

Ask: What differences do you see?

Say: The butterfly chrysalis is protected by its hard outer shell, but it does not make a cocoon like the moth pupa does. The moth pupa makes a protective silk case for itself, called a cocoon.

Ask: What do you think happens after the pupa stage?

Say: The adult monarch butterfly emerges from his hard outer shell, and the adult moth comes out of the cocoon. Later, if female, these adults will lay eggs and the cycle will start all over again.

Insect or not?

Visitors will have the opportunity to sort plastic insects and non-insects.

Age Range: 3 & up

Supplies

- “Which one is an insect?” box of insects and non-insects
- Magnifying glasses
- “Insect” and “Not Insect” cards

Procedure

Explore the visitor’s knowledge on the subject through open-ended questions before explaining how the subject works.

Say: Let’s pretend to be entomologists. Entomologists are a special type of scientist who study bugs.

Show: Box full of insects and non-insects.

Ask: Can you remember how to tell if a creature is an insect or not?

Say: Insects have three body parts and six legs. Let’s put insects on the black card that says “insects” and non-insects on the red card that says “not insects.” We can use the magnifying glass to take a closer look, if we want to. Remember, some insects may not yet look like insects depending on what stage they are in.

Do: Let the children pick a figure from the box. Help them count legs and body parts, and determine if it is an insect or not. If you are unsure, you can always look in a book together. Place the figure on the correct card with the children.
The Very Hungry Caterpillar

Visitors will read The Very Hungry Caterpillar with an adult, and act out the life stages of a butterfly.

Age Range: 2 & up

Supplies
- The Very Hungry Caterpillar book
- Caterpillar / Butterfly puppet

Procedure

Explore the visitor’s knowledge on the subject through open–ended questions before explaining how the subject works.

Ask: Has anyone ever seen a caterpillar? What did it look like?

Say: I have a book about a caterpillar that you may know. It is called *The Very Hungry Caterpillar*. I also have a caterpillar puppet who can act out some of the story. You can pretend to be a caterpillar too.

Do: Read the first page, with the caterpillar puppet in your lap. Encourage the children to sit very still like an egg would. You may suggest that they hold their knees or wrap their arms around themselves.

Do: Read the next page, lifting the caterpillar out of your lap suddenly on the word “pop!” Tell the children that they can hatch out of their eggs too. Move the puppet across the floor, showing how a caterpillar may crawl.

Do: Read the next page. Use the puppet to pretend to eat the illustrated food. Sound effects are encouraged. The caterpillar may make one eating sound for the one apple, two for the two pears, etc. Encourage the child caterpillars to make eating sounds along with you.

Do: Read the next page. You may want to save the eating sound effects until you have read the entire first sentence, and then show the puppet eating frantically. After you say that he had a stomachache, lay the puppet on his side and make a groaning sound.

Life Cycles

Visitors will have the opportunity to explore the differences between the life cycle of a butterfly and a moth.

Age Range: 3 & up

Supplies
- Monarch butterfly display box (real specimens)
- Moth specimens in resin
- Magnifiers

Procedure

Explore the visitor’s knowledge on the subject through open–ended questions before explaining how the subject works.

Say: Earlier we read a book about a caterpillar who turned into a butterfly. Now I want to show you the real butterfly life cycle, and a real moth life cycle too.

Show: Monarch butterfly display box and specimens in resin.

Say: Just as an adult human does not look the same as a baby human, an adult butterfly or moth looks different in its first stage of life.

Ask: Which do you think comes first in the life cycle?

Say: Both the moth and the butterfly life cycles begin with an egg. You can see a lot of moth eggs, but it can be tricky to see the butterfly egg. You can use a magnifier to look into this little tube. Even with the magnifier, the egg will look very small.

Ask: What do you think hatches out of the egg?

Say: Out of the butterfly egg comes a caterpillar (or larva). Out of the moth egg comes a silkworm (or larva).

Ask: What do you notice about the caterpillar and the silkworm? How are they the same? How are they different?

Say: Even though one will turn into a butterfly and one will turn into a moth, they look similar.